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Normality

The real number « is normal to base b if every sequence of m digits in the
base-b expansion of o appears with limiting frequency b=,

Almost all real numbers are normal (from measure theory). Widely believed to
be normal base b for all bases b:

o T and e.

o log 2 and /2.

e The golden mean 7 = (1 ++/5)/2.
e [yvery irrational algebraic number.

e Many other ‘natural” irrational constants.

But there are nmo proots for any of these constants, for any base. Normality
proofs exist only for handtul of artifically constructed constants, such as Cham-

pernowne’s number: 0.1234567891011121314...



Peter Borwein’s Observation on the Binary Digits of log 2

In 1995, Peter Borwein observed that a segment of binary digits of log 2 begin-
ning after the first d bits can be calculated by using a very simple algorithm:

Let {-} denote the fractional part. Then we can write
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2% mod k can be very rapidly evaluated using the binary

algorithm for exponentiation performed modulo &.

e The numerators

e Only a few terms of the second summation need be evaluated.

e All computations can be done with ordinary 64-bit floating-point arithmetic.



The BBP Formula for «

By applying my PSL() computer program to a set of computed constants for
which formulas of this type were known, with the numerical value of 7 appended,
Peter Borwein and Simon Plouffe found this formula for 7:

x 1 A 4 2 1 1 v

= Sk+1 8k+d4 8k+5 8k+6

=0 16F

Thus segments of base-16 (or base-2) digits 7 beginning at arbitrary positions
can be rapidly calculated, as with log 2.

Since 1996, BBP-type formulas have been discovered for numerous other con-
stants.

Question: Why wasn't this formula discovered 250 years ago?



A Connection Between BBP-Type Formulas and Normality

Theorem: The BBP-type constant

_ x plk)
bk

(where p(k) and ¢(k) are integer polynomials, deg p < deg g and ¢ has no zeroes
for positive k) is normal base b if and only if the sequence z¢ = 0, and
n
T, = 1bx,_1+ ﬁ‘A )
q(n)

is equidistributed in the unit interval.

Proof Sketch: Let o, be the base-b expansion of a after the n-th digit.
Following the BBP approach, we can write

= ?@i + MMMW* + B,

where [, goes to zero.



Two Examples

1. Let zg = 0, and
1
Ly — AM&SIH =+ W
n
Is (x,,) equidistributed in [0, 1)?
2. Let g = 0 and

120n2 — 89n + 16
512n* — 1024n3 + 712n2 — 206n + 21

Is (x,,) equidistributed in [0, 1)?

r, = 16x,_1 +

If answer to Question 1 is “yes”, then log 2 is normal to base 2.

If answer to Question 2 is “yes”, then 7 is normal to base 16 (and hence to base
2 also).



A Class of Provably Normal Constants

Using the BBP approach, Richard Crandall and I have now proven normality
for a class of constants, the simplest instance of which is

o 1
@23 = \AMHUH 3h93F
= (0.041883680831502985071252898624571682426096 . . .19

— 0.0ABSE38F634BDA12F684BF35BA731948BOFCDOESEOD . . .15.

a3 was actually proven normal base 2 in a little-known paper by Stoneham in
1977. Crandall and I proved normality and transcendence for an uncountably
infinite class that includes as 3:

o~ 1
Q3(r) = \WH k93k 41y

where 7} is the k-th bit in the binary expansion of r € (0, 1).

These constants also possess the rapid individual digit computation property.
The googol-th binary digit of s 3 1s zero.



Probability Measures and the Birkoff Ergodic Theorem

Definition. Given a probability measure © on a measure space €2, the trans-
formation 7 is said to be ergodicif: (1) for every measurable set A, u(T71A) =

i(A), and (2) if T7'A = A then u(A) =0 or 1.

Example: Q = [0, 1) is the unit circle mod 1, p is ordinary Lebesgue measure,
and T'(x) = {2z}, where {-} denotes fractional part.

Ergodic Theorem. Let f(¢) be an integrable function on a measure space

with probability measure p, and let T" be an ergodic transformation. Then
1 n—-1
lim — > f(T"z) = [fdu forae. z(u)

=90 n k=0

where “for a.e. ()" means for all x except for a set N with pu(N) = 0.

The ergodic theorem can be thought of as the law of large numbers extended to
a general measure space.



Equivalence of Absolutely Continuous Measures

Lemma. Let i be a probability measure and 71" an ergodic transformation.
Suppose that v is another measure for which 7' is ergodic, and further v is
absolutely continuous with respect to p (i.e., v(A) = 0 if and only if p(A) = 0).
Then p = v.

Proof. Applying ergodic theorem to f(t) = I4(t)

)

Jin, S AT = f F) dplt) = p(A) for ae ()

Since v is absolutely continuous with respect to p, the above holds a.e. z(v) as
well. Now since 1" preserves the measure v, we can write, for n > 0.

WA) = [ fa)dv(t) = 'S ] F(T') dvla)
= S S dvle) — [ u Ay = ulA

by the dominated convergence theorem.



The Hot Spot Lemma

Lemma. The real constant « is normal base b if and only if there exists a
constant C' such that for every subinterval [c,d) C [0, 1),

lim sp %QM\ASQN&.QW € [c,d))

n>1 n

< C(d—c¢).

Proof. Let p denote ordinary Lebesgue measure on [0, 1) (the unit interval
mod 1), let T'(x) = {2z}, and let v be the measure on [0, 1), defined on the
interval ¢, d) to be the LHS of the condition in the hot spot lemma. It is easily
seen that 7' preserves both p and v, so that 1" is ergodic for both 4 and v.

The condition in the hot spot lemma is easily seen to imply that v is absolutely
continuous with respect to p. Thus by previous lemma, 4 = v, or in other
words {b*a’} is uniformly distributed in the unit interval mod 1. This implies
that « is normal base b.
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The BBP Sequence Associated with as3s.

The BBP sequence for

x~ 1
023 = X 3
is: zg = 0, and z, = {2x,_1 + r,}. where r, = 1/n if n = 3*, but zero
otherwise. The sequence (z,,) is easily seen to be the concatenation of primitive
linear congruential pseudorandom sequences, each of length 2 - 3%

0, repeated 3 times,

., repeated 3 times,

: ., repeated 3 times,

Ol = Wl
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13 26 25 23 19 11 22 1v v 14 1 2 4 & 16 5 10 20
277 277 277 277 277 277 277 277 277 277 277 277 277 277 27 27 277 2T

repeated 3 times, etc.
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Simple Proof That ay3 Is Normal Base 2

Proof. Note that for n < 3*+1 each z,, is a multiple of 1/3%, and each fraction
7/3% 0 < j < 3" appears exactly three times in the sequence. Also note that

1
n
where o, = {2"aa3}. Given n, let m be the largest power of 3 less than n,
and assume that n is large enough so that n > m > 1/(d — ¢). Now note that
the interval [c —1/(2n), d 4+ 1/(2n)) contains exactly m(d — ¢) (or possibly one

more) multiples of 1/m, and thus can contain at most three times this many
occurrences of z; in the first n elements. Thus we can write

H#o<j<nlay € [c,d)) _ #ocjan(z; € [c—1/(2n),d+1/(2n))

X n—Fk
> 27y,
k=n-+1

|z, — ay| = <

e mg d=9+1 . =0 +1

m(a — c) + mia — c) +

= i&w& < m(d — ¢)
=34 <

Thus s 3 1s normal base 2, by the hot spot lemma.
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A Result for Irrational Square Roots

Lemma. Let B(a) denote the number of one bits in the integer a. Then for any
two positive integers a and b, B(a+b) < B(a)+ B(b), and B(ab) < B(a)B(b).

Proof is by induction on number of bits in a and b.

Theorem: Let B,(a) be the number of one bits in the first n bits of a. If o
is the square root of an integer or rational, then for some constant C'.

rBEﬁm (e v

Proof Sketch. Consider bsg = v/2 truncated to 50 bits:

bso = 1.01101010000010011110011001100111111100111011110011
@mo LITTITT I Ittt it e e e e et i 1ttt 1111t 1111 10011001 .

> 1

Note that the expansion of b2, is all ones, up to approximately 50 bits. Thus
we conclude that the first n bits of v/2 must have at least y/n ones, or else the
product won't have enough ones to fill the first n bits.

This observation leads to a rigorous proof of Theorem A.
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A Result for General Irrational Algebraic Numbers

Theorem. For any real algebraic irrational o, we have

B
lim inf B > 1 (1)
e #Omwﬁ\

Proof. Let p, denote the position of the n-th one in the binary expansion of
a. Note that we can write

a = > 2"+ > 2
k=1 k=pn41
Write the first term as the fraction C,/D,, in lowest terms, and note D,, = 2P

According to Roth’s theorem, since « is algebraic, then given € > 0, there is

some N such that for all n > N and for any F.
Ch E
“7 D, D2

only finitely often. Thus for every e, there is an /N such that for every n > N,
we have p,41 < (2 4 €)p,. It follows that p, < py(2+€)" < K(2+¢)".
and the result tollows with some additional effort.

<
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A Stronger Result for General Irrational Algebraic Numbers

Theorem. Let a be an irrational algebraic number of degree d > 2, and let
aq be the leading (high-order) coefficient for the minimal polynomial satisfied
by a. Then for any ¢ > 0,

B,(a) > (1 — mv@w\ﬁ%\g
for all sufficiently large n.

The proof is given in a new manuscript (March 2003) by Jonathan Borwein,
Richard Crandall, Carl Pomerance and myself.

Corollary. Let a be any positive real, and let F), denote the Fibonacci num-
bers. Then these constants are transcendental:

o 1
br =% or)
6= 5

2= n=1 Mﬁ:

Additional result. This constant is not a quadratic irrational:

< 1
B3 = X

2
n=1 2"
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